Determination, mechanism and monitoring of knockdown resistance in permethrin-resistant human head lice, Pediculus humanus capitis.

TitleDetermination, mechanism and monitoring of knockdown resistance in permethrin-resistant human head lice, Pediculus humanus capitis.
Publication TypeJournal Article
Year of Publication2009
AuthorsClark MJ
JournalJournal of Asia-Pacific entomology
Volume12
Issue1
Pagination1-7
Date Published2009 Mar 1
AbstractPermethrin resistance has been reported worldwide and clinical failures to commercial pediculicides containing permethrin have likewise occurred. Permethrin resistance in head lice populations from the U.S. is widespread but is not yet uniform and the level of resistance is relatively low (~4-8 fold). Permethrin-resistant lice are cross-resistant to pyrethrins, PBO-synergized pyrethrins and to DDT. Nix((R)), when applied to human hair tufts following manufacture’s instructions, did not provide 100% control when assessed by the hair tuft bioassay in conjunction with the in vitro rearing system. Resistance to permethrin is due to knockdown resistance (kdr), which is the result of three point mutations within the alpha-subunit gene of the voltage-gated sodium channel that causes amino acid substitutions, leading to nerve insensitivity.A three-tiered resistance monitoring system has been established based on molecular resistance detection techniques. Quantitative sequencing (QS) has been developed to predict the kdr allele frequency in head lice at a population level. The speed, simplicity and accuracy of QS made it an ideal candidate for a routine primary resistance monitoring tool to screen a large number of louse populations as an alternative to conventional bioassay. As a secondary monitoring method, real-time PASA (rtPASA) has been devised for a more precise determination of low resistance allele frequencies. To obtain more detailed information on resistance allele zygosity, as well as allele frequency, serial invasive signal amplification reaction (SISAR) has been developed as an individual genotyping method. Our approach of using three tiers of molecular resistance detection should facilitate large-scale routine resistance monitoring of permethrin resistance in head lice using field-collected samples.
DOI10.1002/jcp.22409
Alternate JournalJ. Asia Pac. Entomol.