A Point Mutation of Acetylcholinesterase Associated with Azinphosmethyl Resistance and Reduced Fitness in Colorado Potato Beetle

TitleA Point Mutation of Acetylcholinesterase Associated with Azinphosmethyl Resistance and Reduced Fitness in Colorado Potato Beetle
Publication TypeJournal Article
Year of Publication1996
AuthorsZhu KY, Lee SH, Clark JM
JournalPesticide biochemistry and physiology
Volume55
Issue2
Pagination100-8
Date Published1996 Jun
AbstractA serine to glycine point mutation of acetylcholinesterase (AChE, EC 1.1.1.7) was identified in an azinphosmethyl-resistant strain of Colorado potato beetle [Leptinotarsa decemlineata (Say)]. The position of the mutation corresponds to Val 238 of the Torpedo AChE and represents the first amino acid residue to form the alpha-helix, alpha-E’1. The predicted secondary structure of the mutation-containing region of AChE suggested that the transition from the turn to the alpha-helix occurs sooner in the sequence when serine is replaced by glycine. Thus, conformational changes in the AChE due to the alpha-helix deformation were expected to impinge upon both the catalytic and the peripheral binding sites, resulting in the modification of the bindings of organophosphorus insecticides and other ligands to these sites. The mutation appeared to be associated with the fitness of the beetle. The intrinsic rate of increase of the azinphosmethyl-resistant (AZ-R) strain was relatively low when the beetles were reared on the Russet Burbank potato cultivar, but was relatively high when they were reared on the NDA 1725-1 potato cultivar. Because these two potato cultivars contain different amounts of steroidal glycoalkaloids (e.g., alpha-solanine and alpha-chaconine), the different fitness of the AZ-R strain on different potato cultivars may be partially attributed to the increased sensitivity of the azinphosmethyl-resistant form of AChE to the inhibition by alpha-solanine and reduced sensitivity to alpha-chaconine as previously reported.
Alternate JournalPestic Biochem Physiol